
# 1. CURRICULUM INTENT OVERVIEW PLAN Key Stage 3

Subject: Science

Author: JJH + EMS

Created: February 2020

Updated: March 2022



## THINKING PROCESS - CURRICULUM INTENT OVERVIEW PLAN (KS3)

Intent Statement – at Landau Forte Amington, we believe learning powerful knowledge helps students achieve and creates a fairer society. How are you trying to accomplish this, with this Programme of Study (PoS)?

**DEFINITION:** Powerful Knowledge is described as knowledge which enriches students' lives and creates a fairer society by providing students with intellectual power. It is knowledge which support students in engaging with the world and communicating with people regardless of background or social standing.

The science department provides an enriching, engaging and accessible curriculum for all of our students. We aim to build and development our students' skills and powerful knowledge that will enable all of our students to utilise their skills and knowledge in their everyday lives. All students will develop scientific knowledge to engage in a range of discussions about our changing world.

Aims – what do you want pupils to be able to know and do by the time they finish this Programme of Study (PoS)?

We want our students to have gained a good understanding of the main principles in science and its worldly applications and to have gained the necessary skills to aid them in their future learning and careers.

We want all students to be able to communicate their knowledge and skills they have learnt in a variety of ways. Students will gain knowledge about cells, the structure of a variety of organisms, a range of science techniques, why chemicals react, energy in all its stores from electromagnetic radiation to kinetic.

Academy Values – at Landau Forte Amington, we want students to be ambitious, brave and kind. How are these values promoted in this PoS?

Our students will need to be brave when completing new learning, accepting they will make mistakes and learn from them. Our students will be ambitious by always trying to increase the amount of detail in their answers and increase their knowledge. Our students will also need to be kind and supportive of other students, accepting of other people's mistakes and supporting others learning through helping in group tasks and sharing their ideas with the class

KS3 Curriculum Choices – what topics are taught and does it ensure breadth and depth, as well as meet the legal requirements of the National Curriculum (NC)? (Please note - the sequencing of topics will be explored in the implementation overview, the main purpose at this stage is to know what is taught)

The Science curriculum is designed to give students a breadth and depth of the building blocks of Science. We have ensured that all students are following the national curriculum to ensure this breadth. Some of the aspects taught under the national curriculum are not assessed in GCSE Science. These aspects are taught as they help prepare students for other GCSE specifications such as Geography. The skills learnt in these topics aids students with their scientific enquiry and the content is important for students to understand the world around them.

KS3 Specification Choices – what topics are taught and does it ensure breadth and depth, as well as meet the requirements of the exam specification? (Please note - the sequencing of topics will be explored in the implementation overview, the main purpose at this stage is to know what is taught)

|   | YEAR       | Term 1                                                                        | Term 2                                               | Term 3                                                    | Term 4                                          | Term 5                     | Term 6                                          |
|---|------------|-------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------|-------------------------------------------------|
| 7 | Unit/Topic | 7A Cells, tissues,<br>organs and<br>systems.<br>7E Mixtures and<br>Separation | 71 Energy<br>7B Sexual<br>Reproduction in<br>animals | 7G The particle<br>model<br>7J Current and<br>electricity | 7C Muscles and<br>Bones<br>7F Acids and Alkalis | 7K Forces<br>7D Ecosystems | 7H Atoms, elements<br>and compounds<br>7L Sound |

# Specification/ Assessment Objective

What are the minimum requirements for cells to exist and how do they carry out their role? Students will carry out simple and engaging experiments, such as usina a microscope, to help to build their scientific intrique and skills. How to separate more complicated mixtures using Distillation. Students will carry out a range of investigations to separate substances that will include filtering rock salt to leave brine, and then evaporating techniques to leave behind pure salt. Checking for any misconceptions from KS2

Looking at the different energy stores that are used to provide us with energy. Students will look at the different energy stores that humans use for example: electrical energy or heat energy and then build on their understanding of how we use these stores for our own uses. For example a dam being used to provide electrical energy for a child's play station! **Understanding how** plants and animals reproduce. Students will also look closely at the reproductive organs of plants and animals so that they can understand how plants produce offspring and how animals have babies. This topic will help them to understand why some animals give birth to live young and why some animals lay eggs instead.

Looking at the structure of an atom. What makes up the matter in the universe? What are the different states of matter What are the building blocks for life? Drawing circuit diagrams and understanding how electricity flows. Students design and build circuits will a selection of components, such as a bulb, motor or

switch.

Skeletal structure and breathing. Students will look at a human skeleton in detail. They will be able to answers questions such as: How many bones make up our skeleton? Where in our bodies would you find the smallest/largest bones? Neutralisation, indicators and how to test for acids and alkalis. Students will carry out scientific experiments using a variety of acids and alkalis and different experimental techniques to build on their practical skills.

What is a force and how can they Influence objects? Students will start to understand what happens to objects if they are pulled or pushed. They may start to develop an understanding of gravity and the difference between mass and weight. For example bathroom scales measure our mass not our weight! What is an Ecosystem? Variation of plants and animals and inheritance of characteristics Students will investigate different types of ecosystems, how organisms interact in them and how different factors can influence an ecosystem.

Students will be introduced to atoms and the Periodic Table so that they can gain an appreciation that everything is made up of something and as a young scientist they can then study atoms and which elements to use to make certain compounds. Introduction to the Periodic Table. chances are most students will not have seen one before. Sound waves, how is sound produced and recorded. Introduction of a longitudinal wave

Sound waves, how is sound produced and recorded. Introduction of a longitudinal wave Students will also explore how sound waves are formed and how our ears and brain detect and transform sound waves into sounds that we understand and can hear. If a tree falls in the forest and no one hears it does it still make a sound?

|   |                | 1                   |                        | T                      | T                    |                        | ı ı                    |
|---|----------------|---------------------|------------------------|------------------------|----------------------|------------------------|------------------------|
|   | Unit/Topic     | 8A Food and         | 81 Fluids              | 8F The Periodic Table  | 8C Breathing and     | 8K Energy Transfers    | 8H Rocks               |
|   |                | Nutrition           | 8B Plants and          | 8J Light               | Respiration          | 8D Unicellular         | 8L Earth and Space     |
|   |                | 8E Combustion       | Reproduction           |                        | 8G Metals and their  | organisms              |                        |
|   |                |                     |                        |                        | uses                 |                        |                        |
|   | Specification/ | Nutrients needed    | Pressure in air and in | Introduction to        | Introduction to the  | Students will learn    | Introduction to Rocks  |
|   | Assessment     | for basic nutrition | liquids. Students will | elements in the Earth  | process of           | about the transfer of  | and the Rock Cycle.    |
|   | Objective      | and how waste       | investigate the        | and where to find      | Respiration.         | energy, Power,         | Students will learn    |
|   |                | food is then        | meaning of pressure,   | them.                  | Students will        | Efficiency and how     | about the different    |
|   |                | disposed of.        | how to calculate it    | Students will explore  | explore respiration  | to calculate energy    | categories of rocks,   |
|   |                | Students will gain  | and how it affects     | some of the            | in plants and the    | used and the           | how they are formed    |
|   |                | a good              | everyday objects.      | elements that we       | conditions           | energy efficiency of   | and categorised.       |
|   |                | understanding of    | Students will then     | can find in the        | necessary for the    | different appliances.  | Introduction to        |
|   |                | the different types | focus on plants, how   | Periodic Table and     | process to take      | Introduction to        | Space, luminous        |
|   |                | of nutrients that a | they reproduce in      | how we then use        | place. Students will | Microorganisms,        | objects, the solar     |
|   |                | human body          | terms of pollination.  | these elements to      | also study the       | unicellular and        | system and space       |
|   |                | needs and the       | Students will then     | make everyday          | process of gas       | multicellular          | travel.                |
|   |                | reasons why we      | also study how         | products.              | exchange.            | organisms. Students    | Students will explore  |
| _ |                | need to eat a       | plants use pollination | Introduction to the    | Introduction to      | will study the         | space and its          |
| 8 |                | balanced diet.      | to produce offspring.  | study of light energy. | metals, their        | structure and          | structure to try to    |
|   |                | Students will focus |                        | Students will learn    | chemical             | behaviour of           | understand as much     |
|   |                | on combustion       |                        | about refraction,      | reactions,           | bacteria, viruses and  | as we can              |
|   |                | and learn how to    |                        | reflection and how     | properties ad their  | fungi. Students can    | understand about       |
|   |                | write basic         |                        | colour is seen.        | uses. Students will  | then begin to          | space. Students will   |
|   |                | equations.          |                        | Students will lastly   | engage in            | associate this         | learn about the        |
|   |                | Students will have  |                        | develop their          | experiments to       | behaviour with         | International Space    |
|   |                | a go at burning     |                        | understanding of       | predict and          | diseases and start to  | station (ISS) and how  |
|   |                | metals, as an       |                        | light and all of the   | discover what        | understand how         | astronauts can live in |
|   |                | example of          |                        | amazing things that    | happens to metals    | bacteria and viruses   | space.                 |
|   |                | combustion, to      |                        | light energy can do.   | when they react      | cause illness and      |                        |
|   |                | observe and         |                        | For example using      | with fire, water and | what can be done       |                        |
|   |                | record what         |                        | light energy to        | acids and what       | to treat them.         |                        |
|   |                | happens.            |                        | create disco lights!   | they can be used     | Students will          |                        |
|   |                |                     |                        |                        | for.                 | hopefully realise that |                        |
|   |                |                     |                        |                        |                      | antibiotics are not    |                        |
|   |                |                     |                        |                        |                      | necessary for all      |                        |
|   |                |                     |                        |                        |                      | illnesses.             |                        |
|   |                |                     |                        |                        |                      |                        |                        |

| 9 | Unit/Topic  9A Genetics and Evolution 9E Making materials 9F Reactivity | 91 Forces and Motion<br>9B Plant Growth<br>9J Force Fields and<br>Electromagnets | B1. Cell biology | C1. Atomic<br>structure and the<br>periodic table | P1. Energy | B7. Ecology |  |
|---|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|---------------------------------------------------|------------|-------------|--|
|---|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|---------------------------------------------------|------------|-------------|--|

| Specification/ | Introduction to                      | Forces, Speed and                        | 4.1.1.1 Eukaryotes and  | 5.1.1.1 Atoms,                     | 6.1.1.1 Energy stores | 4.7.1.1 Communities     |
|----------------|--------------------------------------|------------------------------------------|-------------------------|------------------------------------|-----------------------|-------------------------|
| Assessment     | Genetics and                         | how it is calculated.                    | prokaryotes             | elements and                       | and systems           | 4.7.1.2 Abiotic factors |
| Objective      | Evolution in                         | Students will explore                    | 4.1.1.2 Animal and      | compounds                          | 6.1.1.2 Changes in    | 4.7.1.3 Biotic factors  |
|                | animal and                           | the connection                           | plant cells             | 5.1.1.2 Mixtures                   | energy                | 4.7.1.4 Adaptations     |
|                | plants. Students                     | between the                              | 4.1.1.3 Cell            | 5.1.1.3 The                        | 6.1.1.3 Energy        | 4.7.2.1 Levels of       |
|                | will explore the<br>structure of DNA | distance objects can                     | specialisation          | development of the                 | changes in systems    | organisation            |
|                | and how it leads                     | travel and how long it takes them to and | 4.1.1.4 Cell            | model of the atom                  | 6.1.1.4 Power         | 4.7.2.2 How materials   |
|                | to genetic                           | then learn how to                        | differentiation         | (common content                    | 6.1.2.1 Energy        | are cycled              |
|                | changes in                           | calculate the speed                      | 4.1.1.5 Microscopy      | with physics)                      | transfers in a system | 4.7.2.3                 |
|                | humans and the                       | of the object.                           | 4.1.1.6 Culturing       | 5.1.1.4 Relative                   | 6.1.2.2 Efficiency    | Decomposition           |
|                | idea of natural                      | Introduction to how                      | microorganisms          | electrical charges of              | 6.1.3 National and    | 4.7.2.4 Impact of       |
|                | selection.                           | plants grow and                          | 4.1.2.1 Chromosomes     | subatomic particles                | global energy         | environmental change    |
|                | Introduction to                      | how farmers try to                       | 4.1.2.2 Mitosis and the | 5.1.1.5 Size and mass              | resources             | 4.7.3.1 Biodiversity    |
|                | Materials used for                   | increase the yield of                    | cell cycle              | of atoms                           |                       | 4.7.3.2 Waste           |
|                | the production of                    | their crops. Students                    | 4.1.2.3 Stem cells      | 5.1.1.6 Relative                   |                       | management              |
|                | everyday objects.                    | will learn about the                     | 4.1.3.1 Diffusion       | atomic mass                        |                       | 4.7.3.3 Land use        |
|                | Students will learn                  | process of                               | 4.1.3.2 Osmosis         | 5.1.1.7 Electronic                 |                       | 4.7.3.4 Deforestation   |
|                | about the use of                     | Photosynthesis and                       | 4.1.3.3 Active          | structure                          |                       | 4.7.3.5 Global          |
|                | ceramics and                         | what plants need to                      | transport               | 5.1.2.1 The periodic               |                       | warming                 |
|                | glass to make<br>materials.          | grow and develop.  Further study of      | liansport               | table                              |                       | 4.7.3.6 Maintaining     |
|                | Introduction to                      | electricity by looking                   |                         | 5.1.2.2 Development                |                       | biodiversity            |
|                | Reactivity in terms                  | at force fields and                      |                         | of the periodic table              |                       | 4.7.4.1 Trophic levels  |
|                | of chemical                          | electromagnets.                          |                         | 5.1.2.3 Metals and                 |                       | 4.7.4.2 Pyramids of     |
|                | reactions.                           | Building on previous                     |                         | non-metals                         |                       | biomass                 |
|                | Students will look                   | learning from year 7J                    |                         | 5.1.2.4 Group 0                    |                       | 4.7.4.3 Transfer of     |
|                | at reactions of                      | current and                              |                         | 5.1.2.4 Group 0<br>5.1.2.5 Group 1 |                       | biomass                 |
|                | metals with acids                    | electricity. Students                    |                         | •                                  |                       | 4.7.5.1 Factors         |
|                | and water for                        | will learn about                         |                         | 5.1.2.6 Group 7                    |                       |                         |
|                | example.                             | resistance in circuits,                  |                         | 4.1.3.1 Comparison                 |                       | affecting food security |
|                |                                      | static electricity, the                  |                         | with Group 1                       |                       | 4.7.5.2 Farming         |
|                |                                      | formation of force                       |                         | elements                           |                       | techniques              |
|                |                                      | fields and                               |                         | 4.1.3.2 Typical                    |                       | 4.7.5.3 Sustainable     |
|                |                                      | electromagnets.                          |                         | properties                         |                       | fisheries               |
|                |                                      |                                          |                         |                                    |                       | 4.7.5.4 Role of         |
|                |                                      |                                          |                         |                                    |                       | biotechnology           |
|                |                                      | 1                                        |                         | l l                                |                       |                         |

| National Curriculum content missing from this PoS and why? | Content taught in addition to the National Curriculum and why?                                                                                                                                                                                                              |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No content from the National curriculum is missing         | Viruses are not referenced in the KS3 NC. Viruses are not counted as living as they don't reproduce themselves, a cell is needed for this.  Foods are also tested in order to calculate the amount of energy in foods – this links with nutrition, and Health and Wellbeing |

Powerful Knowledge Choices – what powerful knowledge is included in this PoS? Consider what knowledge is it important for our students to know, so that when they leave school they can engage in and lead discussions, with people from the most advantaged backgrounds? (Please note - the sequencing of topics will be explored in the implementation overview, the main purpose at this stage is to know what powerful knowledge is gained)

| YEA | R                     | Term 1                                                                                                                                                                                                               | Term 2                                                                                                                                                                                                                                                  | Term 3                                                                                                                                                                                                                                                                                                                                                       | Term 4                                                                                                                                                                                                                             | Term 5                                                                                                                                                                                                                                                         | Term 6                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Powerful<br>Knowledge | Cells – An understanding of how the body functions. How our cells function through healthy lifestyles. Separating substances – An understanding that mixed substances can be made pure, such as drugs and medicines. | Energy – To be able to discuss the different energy stores there are how they can be altered used and transferred.  Reproduction – Demonstrating links to cells and growth. To be able to talk about how babies are made and grown inside a humans body | The Particle Model – An understanding of what makes up all matter and an insight into how different materials can be made. Current and Electricity –To be able to demonstrate understanding of how circuits work. An insight into how most devices are powered by electrical circuits. To be able to build an electrical circuit using different components. | Muscles and breathing – How the body produces energy. To be able to discuss how muscles allow movement. Acids and Alkalis – Show an understanding of the function of acids and alkalis and be able to discuss their everyday uses. | Forces – How forces can change the movement of objects. To be able to discuss the different types of forces and the impact they can have. Ecosystems – To demonstrate an understanding that all living organisms live in habitats that are part of ecosystems. | Atoms, elements and compounds—To be able to discuss patterns and trends displayed in chemical reactions. To be able to predict the name of a compound made from certain elements.  Sound — To be able to talk about ow this type of energy can be produced and transferred, and how a human ear can detect sound. |

| 14/1 11 1    | 0 " 4 "                |                        | TI 5 1: 1 A4 1 1     |                      |                       |                       |
|--------------|------------------------|------------------------|----------------------|----------------------|-----------------------|-----------------------|
| Why it is    | Cells –Are the         | Energy – An            | The Particle Model – | Muscles and          | Forces – Links to     | Atoms, elements and   |
| important to | Building blocks for    | understanding of       | Students being able  | breathing – Healthy  | transport             | compounds –           |
| know         | life. It is important  | how future energy      | to link chemistry    | Lifestyles and how   | infrastructure. HS2   | Application of        |
|              | to know how cells      | needs to be created.   | topics together and  | the body converts    | construction and      | knowledge to new      |
|              | function in all living | It is important to     | apply this to new    | chemical energy to   | energy/forces         | situations. For       |
|              | organisms              | understand how         | situations.          | different energy     | implications.         | example, if           |
|              | functions.             | renewable energy       | Engineers need to    | stores. A            | Investigate the       | chemical X and Y      |
|              | Separating             | sources work.          | have an              | Physiotherapist      | careers within this   | react with Z then     |
|              | substances –           | Reproduction –         | understanding of     | needs to have a      | project.              | what would happen     |
|              | Pharmaceutical         | Healthy lifestyles and | which materials are  | good understanding   | A RAF pilot needs to  | if we react Q with Z. |
|              | companies need         | demographics           | going to be suitable | of how muscles and   | understand how        | Sound – Sound         |
|              | to have pure drugs     | planning within the    | when engineering     | bones work and how   | forces and gravity    | engineers and how     |
|              | made. Engineering      | NHS for future         | certain products     | different breathing  | will impact the way   | the NHS improve the   |
|              | firms will need to     | population. A          | Current and          | exercises can help a | that they can fly a   | hearing of those with |
|              | check purity. A        | midwife needs to       | Electricity – It is  | person to recover    | plane. Astronauts     | hearing loss. How     |
|              | Pharmacist for         | have a good            | important to know    | from a Physical      | need to have a        | does a cochlear       |
|              | example needs to       | understanding of       | how our future       | illness. Acids and   | strong understanding  | implant work? A       |
|              | have an                | how a foetus grows     | energy needs will    | Alkalis – How        | of the conditions and | doctor needs to       |
|              | understanding of       | inside a mother's      | change and what      | industries make      | lack of gravity in    | have an excellent     |
|              | how medicines are      | womb and how a         | different techniques | different chemicals  | space therefore how   | understanding of      |
|              | made from pure         | mother then gives      | we will need to      | through              | will forces affect    | how the human ear     |
|              | substances.            | birth to their baby.   | develop to produce   | neutralisation       | them in a space       | detects sound.        |
|              |                        |                        | energy.              | reactions. A person  | shuttle.              |                       |
|              |                        |                        |                      | who takes an         | Ecosystems – Are      |                       |
|              |                        |                        |                      | indigestion tablet   | living organisms      |                       |
|              |                        |                        |                      | should have a basic  | adapted for a         |                       |
|              |                        |                        |                      | idea of why they     | changing climate?     |                       |
|              |                        |                        |                      | need to take it.     | What measures need    |                       |
|              |                        |                        |                      |                      | to be taken?          |                       |
|              |                        |                        |                      |                      | Marine Biologists     |                       |
|              |                        |                        |                      |                      | need to have a        |                       |
|              |                        |                        |                      |                      | strong understanding  |                       |
|              |                        |                        |                      |                      | of the different      |                       |
|              |                        |                        |                      |                      | habitats and          |                       |
|              |                        |                        |                      |                      | ecosystems that       |                       |
|              |                        |                        |                      |                      | exist in our oceans   |                       |
|              |                        |                        |                      |                      | so that they can      |                       |
|              |                        |                        |                      |                      | keep investigating    |                       |
|              |                        |                        |                      |                      | and trying to prevent |                       |
|              |                        |                        |                      |                      | climate change        |                       |
|              |                        |                        |                      |                      | damage to our         |                       |
|              |                        |                        |                      |                      | oceans.               |                       |

|   |   | Powerful  | Food and Nutrition— | Fluids – Knowledge       | The Periodic Table –  | Breathing and         | Energy Transfers –    | Rocks – To             |
|---|---|-----------|---------------------|--------------------------|-----------------------|-----------------------|-----------------------|------------------------|
|   |   | Knowledge | An understanding    | of the range of uses     | Understand how        | Respiration – How     | The range of energy   | understand the         |
|   |   |           | of how the human    | for fluids and           | useful the Periodic   | the body effectively  | transfers that can    | formation of different |
|   |   |           | body carries out    | pressure in everyday     | Table is and what is  | carries out           | take place and how    | types of rocks and     |
|   |   |           | the process of      | situations.              | found in it. To be    | respiration and the   | we change these       | what they can be       |
|   |   |           | digestion and why   | Plants and               | able to state how we  | difference between    | energy stores.        | used for.              |
|   |   |           | nutrients are so    | Reproduction-            | can use the Earth's   | breathing and         | Unicellular           | Space – What is out    |
|   | 8 |           | important in the    | <b>Understanding how</b> | resources.            | respiration.          | organisms –To         | there? To understand   |
|   | 0 |           | human body.         | plants reproduction      | Light – How light and | Metals and their uses | understand what       | the structure of our   |
|   |   |           | Combustion -        | using the process of     | other waves can be    | –How metals are       | unicellular organisms | solar system and       |
|   |   |           | Understanding how   | pollination              | used for data         | extracted from the    | are and their         | how space              |
|   |   |           | the process of      |                          | communication. An     | Earth and what we     | structure and         | exploration works.     |
|   |   |           | combustion works    |                          | understanding of      | can use metals for.   | functions.            |                        |
|   |   |           | and what the        |                          | visible light and how |                       |                       |                        |
|   |   |           | products will be.   |                          | we see objects        |                       |                       |                        |
| Ш |   |           |                     |                          |                       |                       |                       |                        |

| _ |              |                       | I                       | I                       |                       | I                      | 7                     |
|---|--------------|-----------------------|-------------------------|-------------------------|-----------------------|------------------------|-----------------------|
|   | Why it is    | Food and nutrition—   | Fluids – Uses of fluids | The Periodic Table –    | Breathing and         | Energy Transfers –     | Rocks – How the       |
|   | important to | Healthy lifestyle     | in various industries   | What resources          | Respiration – Healthy | Energy for the future. | Earth was formed      |
|   | know         | and how               | such as water           | will/won't be           | lifestyles, how we    | It is important to     | and how we know       |
|   |              | athletes/elderly      | pressure or hydraulic   | available to us in the  | can maximise          | know how will we       | this. Sea fossils on  |
|   |              | etc. can support      | brakes, and how we      | future. It is important | energy for the body.  | produce it? What       | Snowdon. How? A       |
|   |              | their health          | benefit from these      | to know how useful      | It is important to    | impact will this       | Geologist needs to    |
|   |              | through diet. A       | processes.              | Earth`s elements are    | understand the        | have?                  | have a good           |
|   |              | Nutritionist will use | Plants and              | to us so we know        | difference between    | Unicellular            | understanding of the  |
|   |              | information about     | Reproduction-           | what to use them for.   | respiration and       | Organisms – How        | formation and         |
|   |              | a healthy diet and    | Understanding how       | Light – It is important | breathing.            | diseases are spread    | features of our       |
|   |              | nutrition to put      | specific plants         | to understand how       | Metals and their uses | and the guidance       | planet and what it is |
|   |              | together meal         | reproduce. Farmers      | data communication      | —It is important to   | given by NHS           | made up of            |
|   |              | plans for a person    | need to understand      | is changing and how     | know where we get     | England is             | Space – What is out   |
|   |              | with diabetes, for    | how to increase their   | it will continue to     | our raw materials     | formulated. A          | there? Why isn't      |
|   |              | example, to help      | crop yields by ow       | change in the future.   | from. An Architect    | scientist during an    | there life on other   |
|   |              | support their health  | the plants reproduce    | A computer              | needs to understand   | epidemic, needs to     | planets in our solar  |
|   |              | and nutrition.        | and grow.               | engineer will need to   | how different         | have a strong          | system? Why does it   |
|   |              | Combustion – The      |                         | understand how fibre    | materials, such as    | understanding of       | take so long to get   |
|   |              | use of fuels as an    |                         | optics work in          | granite, stone, steel | how diseases are       | to the moon?          |
|   |              | energy source. For    |                         | internet connections    | and marble are        | spread, how            |                       |
|   |              | example it is         |                         | to therefore fix        | obtained and          | vaccines work and      |                       |
|   |              | important to know     |                         | problems when they      | produced and how      | how diseases can be    |                       |
|   |              | which fuel sources,   |                         | occur.                  | suitable they are for | treated.               |                       |
|   |              | when burned,          |                         |                         | specific uses.        |                        |                       |
|   |              | release the most      |                         |                         | -                     |                        |                       |
|   |              | energy.               |                         |                         |                       |                        |                       |
|   |              |                       |                         |                         |                       |                        |                       |
| 1 |              |                       | 1                       | 1                       |                       | 1                      | 1                     |

Genetics and A system is an object Powerful Forces and Motion-Plant and animal All substances are Students should be Knowledge **Evolution-The Understanding how** cells (eukaryotic made of atoms. An or group of objects. able to describe: atom is the smallest • different levels of understanding of forces are used in cells) have a cell There are changes in how the same the movement of membrane. part of an element the way energy is organisation in an species of different kinds of cytoplasm and that can exist. stored when a ecosystem from organisms can be objects, for example write formulae and system changes. individual organisms genetic material different. To be race cars and enclosed in a balanced chemical Students should be to the whole able to describe all able to discuss industrial cranes nucleus. equations ecosystem • suggest suitable how certain Plant Growth-The Bacterial cells the changes • the importance of organisms have understanding of (prokaryotic cells) separation and involved in the interdependence evolved over time. purification what plants need to are much smaller in way energy is stored and competition in a Making Materialsgrow successfully comparison. techniques for when a system community. To understand how and what can They have mixtures when given changes, for Students should be materials are able to explain how impede their growth cytoplasm and a cell appropriate common situations. chosen to make Force field and membrane information. Power is defined as a change in an certain products Electromagnets-The surrounded by a cell **Understand how** the rate at which abiotic factor would and how they are understanding of scientific energy is transferred affect a given wall. investigations has led made. how electrical of The aenetic material or the rate at which community given Reactivity-The how a force field is is not enclosed in a to differing models work is done. appropriate data or understanding of generated and how nucleus. It is a single for the atom. Atoms Energy can be context. how metals react an electromagnet DNA loop and there are very small, transferred usefully, Students should be stored or dissipated, with different can be made. may be one or more havina a radius of able to explain how small rings of DNA a change in a biotic substances and about 0.1 nm (1 x 10but cannot  $^{10}$  m). how to test for their called plasmids. be created or factor might affect a Students should be products. The radius of a destroyed. aiven community able to demonstrate nucleus is less than The energy aiven appropriate an understanding of 1/10 000 of that of efficiency for any data or context. the scale and size of the atom (about 1 x energy transfer can Students should be cells and be able to  $10^{-14}$  m). be calculated able to explain how make order of Students should be using the equation: organisms are magnitude able to relate size efficiency = useful adapted to live in calculations. and scale of atoms output energy their natural including the use of to objects in the transfer / total input environment, given energy transfer standard form. physical world. The appropriate The culturing of relative atomic mass The main energy information. of an element is an resources available microorganisms to Students should help to identify a average value that for use on Earth understand that specific type of takes account of the include: fossil photosynthetic pathogen that may abundance of the fuels (coal, oil and organisms are the be causing infection gas), nuclear fuel, isotopes of the producers of element. bio-fuel, wind, biomass for life on hydroelectricity, Earth.

|  |  | geothermal, the tides, the Sun and water waves. | Biodiversity is the variety of all the different species of organisms on earth, or within an ecosystem.  Humans reduce the amount of land available for other animals and plants by building, quarrying, farming and dumping waste.  Students should be able to describe some of the biological consequences of |
|--|--|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  |                                                 | consequences of global warming.                                                                                                                                                                                                                                                                                 |

# Why it is important to know

Genetics and Evolution- It is important to understand how organisms can and have evolved. How have humans evolved as a species? Makina Materials – It is important to understand that certain products have to be made by specific materials so that the properties of the product match the intended use. Reactivity-To understand the problems of what can happen to a product if it is made from an incorrect metal.

Forces and Movement-In engineering, an enaineer needs to understand how objects work and how to fix them. what forces need to be applied to make a race car go faster. Plant Growth-It is important that a farmer understands how plant growth can be promoted to increase yield of crops. Force fields and Electromagnets-It is important to understand how force fields are generated and what they can be used

for.

Students will gain an understanding of new innovations, such as, new types of man-made polymers and smart materials, such as, nanotubes. Why does the same chemical but bonded differently behave differently? - Links to the materials Royal Royce uses such a turbine blades being grown as one crystal of metal!

Students will gain an understanding of how scientists calculate the exact amount of chemicals needed to produce a certain chemical reaction or chemical product. For example, a food scientist. In short how does a chemist work alongside an accountant in order to make a profit. A force is a push or pull that acts on an object due to the interaction with another object. How forces affect movement and a range of examples for moving objects.

Students will learn that Engineers use these principles of s,l, g when designing vessels to withstand high pressures and temperatures, such as submarines and spacecraft. How can specific heat capacity be important for future homes storing heat energy?

Why and how are

particular elements

chosen to perform specific tasks, such as, being used for water pipes om our homes. A plumber need to understand that specific metals can only be used because of their structure. Advancements in materials used in a range of industries. A force is a push or pull that acts on an object due to the interaction with another object. How forces affect movement and a range of examples for moving objects. The braking distance of a vehicle can be affected by adverse road and weather

Students will be able to understand how plants play an important part in the creation of life. An appreciation for the impact human activity has in the atmosphere so students can engage in the debate for future changes we need to make. Eg population size, energy production, use of land

It is important in industry to choose materials based on their particular product students will gain an insight into how these properties could be tested. Pharmacists need to have a good understanding of how chemicals, such as, acids and alkalis react when dispensing medicines to patients.

Students will use their prior knowledge of cells to help explain why cells need to maintain its conditions. Understanding how the body regulates conditions. Students will have the knowledge to interact effectively with health professionals in order to discuss their own health and that of others.

Students will gain an understanding of how to alter the rate of a reaction. The applications are wise and varied, simply any reaction than is taking place uses this science.

Students will gain skills to analyse graphs. A vital skill in any sector of employment.

Radioactive
materials are widely
used in medicine,
industry, agriculture
and power
generation. This
knowledge would
be very important for
students wanting to
take any of these

|                      |                     | 1                      |
|----------------------|---------------------|------------------------|
| The braking distance | conditions and poor | career paths.          |
| of a vehicle can be  | condition of the    | Students will have     |
| affected by adverse  | vehicle.            | the understanding      |
| road and weather     |                     | about the social,      |
| conditions and poor  |                     | environmental and      |
| condition of the     |                     | economical impacts     |
| vehicle.             |                     | that a nuclear         |
|                      |                     | accident can have      |
|                      |                     | on society. This could |
|                      |                     | aid careers in         |
|                      |                     | journalism or as a     |
|                      |                     | historian looking into |
|                      |                     | previous nuclear       |
|                      |                     | disasters.             |
|                      |                     | MSci degree at         |
|                      |                     | Birmingham             |
|                      |                     | University to train    |
|                      |                     | radiation scientists   |
|                      |                     | for                    |
|                      |                     | working/dismantling    |
|                      |                     | nuclear power          |
|                      |                     | plants in the UK.      |

| How does the | Curriculum Intent meet the ACE curriculum design?                                                                                                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambitious    | Students are able to access the content and their appropriate level and the content allows for all students to be stretched in their development   |
|              | of new skills, knowledge, and application.                                                                                                         |
|              | Students learn through a range of activities, including practical work. All students will be stretched through the various forms of new learning   |
|              | and assessment.                                                                                                                                    |
| Challenging  | They will have a range of learning activities to stretch their knowledge. The curriculum builds on their prior knowledge and students will need to |
|              | link prior learning from a range of topics.                                                                                                        |
|              | Assessments test knowledge, new skills, and their application in order for students to understand their weaknesses and strengths.                  |
| Engaging     | Links to the world around us, the impact that we have on the world through application are used to demonstrate why science is important.           |
|              | Students see a range of practical applications for the science and careers where these are useful.                                                 |
|              |                                                                                                                                                    |

### What are the current strengths of the Curriculum Intent?

Content is revisited throughout KS3 with topics being linked together

A link to the applications of the science taught

A range of activities to include practical work

Using a range of skills in the lesson and therefore linking learning from other curriculum areas

Time for students to explain their understanding through open activities

# What specific actions have to be taken in response to the above? Please consider:

- KS3 Curriculum content changes;
- Powerful knowledge changes;
- Modifications to ensure an ACE curriculum design;
- CPD for teachers in your subject area;
- Additional research you have to consider as part of this review.

The previous curriculum within the department did not allow students to develop deeper understanding of the content. The previous curriculum covered the contents in two years and didn't engage students and develop skills in the same level of depth.

Using the What, why, how and links to particular applications or careers will give students the powerful knowledge to be continue to gain knowledge and skills. Assessments have changed to assess practical skills, knowledge, and the depth of these.

Staff have been working on practical skills in their CPD – the department had previously reduced the amount of practical work that the students had been completing.

We are currently reviewing a change to exam board and well as two possible vocational awards for Delta. AQA exam questions regarding core practical investigations are more consistent as to the skills and techniques students will need to answer these.